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Parametric links among Monte Carlo, phase-field, and sharp-interface models of interfacial motion
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Parametric links are made among three mesoscale simulation paradigms: phase-field, sharp-interface, and
Monte Carlo. A two-dimensional, square lattice, 1/2 Ising model is considered for the Monte Carlo method,
where an exact solution for the interfacial free energy is known. The Monte Carlo mobility is calibrated as a
function of temperature using Glauber kinetics. A standard asymptotic analysis relates the phase-field and
sharp-interface parameters, and this allows the phase-field and Monte Carlo parameters to be linked. The result
is derived without bulk effects but is then applied to a set of simulations with the bulk driving force included.

An error analysis identifies the domain over which the parametric relationships are accurate.
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[. INTRODUCTION gible [28]. With the free energies related, a numerical cali-
bration of the MC mobility can be made using its Sl coun-

Phase-fieldPP [1-9] and Monte Carlo(MC) [10-17] terpart. All three modeling methods discussed can be used to
models are commonly used to simulate the motion of phastfack interfaces of arbitrary shape, but it is sufficient to re-
and grain boundaries. The two approaches are ofteftrict attention to the circular geometry illustrated in Fig. 1.
contrasted—continuous versus discrete, deterministic versus With a link established between the two paradigms, bulk
probabilistic, diffuse interface versus sharp interface—bu€nergy can be included as an additional driving force. This
making analytical links between the relevant parameters i§an only be accomplished because the driving force and mo-
difficult because there are few closed form solutions for theDility were treated separately in the absence of bulk effects.
MC models. Such links would be useful in making quantita-We posit that the MC mobility function is unchanged by the
tive assessments of which method best serves a given appliclusion of bulk energy and give numerical evidence for this
cation and could further the development of parametric rela®Vver a range of values of bulk energy, interaction energy, and
tions between meso and macro length scal@g]. A temperature. While the bulk energy considered here depends
comparison of the Potts and phase-field models has begilly on the phase or orientation, the method should apply
carried out in Ref[19], but no analytical relationship be- €qually well to systems for which the bulk energy is a func-
tween the two approaches was developed. If each paradigﬁ?” of elastic_ stra_lin, temperature, or solute conc_entration. It
can be analytically related to deterministic, sharp-interfacénay be possible in the future to derive an analytical expres-
(SI) kinetics, the SI driving force and interfacial mobility Sion for the mobility of the MC system, as suggested by
provide a means for relating their parameters. Here shar§Pohn[21], but our objective is simply to obtain a set of
interface refers to the modeling paradigm wherein the interfelations that allow quantitative comparisons to be made be-
face is endowed with a surface energy and has a velocitjveen PF and MC models. Even so, we derive an estimate
proportional to the thermodynamic driving force for such
motion. Figure 1 shows a single time slice from all three
paradigms for a single internal grain shrinking because of
surface energy.

The asymptotic analysis of the PF equations creates one
leg of such a link, but an analogous leg for the MC method is
not generally feasible; the approach is based on a micro-
scopic Hamiltonian, and the analytical evaluation of thermo-
dynamic properties has been obtained for only a few model (@) (b)
systems. Moreover, the MC methods employ probabilistic
algorithms that make it difficult to derive an analytical form
for the effective mobility of an interface. Within a special
setting, though, both the driving forces and mobilities of the
Sl and MC models can be related. The result can then be
used to relate the PF and MC models.

An analytical link between the MC and Sl driving forces
can be made by considering a particularly simple MC (©) (d)
system—a two-dimensional square lattice in the absence of
bulk energy for which the interfacial free energy of the 1/2  F|G. 1. Single time slices of shrinking internal grains illustrating
Ising model has been derived by Onsafj20]. Because the the kinematic distinctions betweef@) sharp-interface(b) phase-
Sl interfacial energy is isotropic, the MC temperature musfield, (c) Monte Carlo(low temperaturg and(d) Monte Carlo(high
be sufficiently high that anisotropic lattice effects are negli-temperaturemodels.
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for the mobility at low temperature, which matches quiteMC approach. For each of thd points in a discrete grid,

well with numerical results. bulk and surface energy are modeled through lattice energy,
and an interaction term is associated wih neighboring
Il. ENERGY points. The system Hamiltonian is
The energy functionals associated with each modeling
paradigm are intended to represent the same physical pro- H:% bmSﬁ_JEN: EM: S, Sj )
cess.
whereS; is the spin variable {1 for the inner grain and 1
A. Sharp-interface energy for the outer graihat sitei and the first term accounts for
For the circular geometry to be considered, the total sysPulk energy differences between grains. The second term in
tem free energy within a SI paradigm is the Hamiltonian is the interaction energy between nearest-
neighbor bins withs the Kronecker delta and>0. A square
Es=20JmA—by(Ag—A). (1)  grid is used with a lattice spacing df.
Herea.is the free surface energy per unit bounqlary length IIl. KINETIC EQUATIONS
and by is the bulk free energy difference per unit area be-
tween inner and outer phases, so that 0 implies that the The Sl equation of motion is based on the supposition that

inner grain has a higher bulk energy than the outer grain. Ththe interface normal speed is proportional to the thermody-
areaA, is the total area of the domain under consideration.namic driving force associated with such movement. For
two-dimensional geometries, the kinetic equation can be ex-

B. Phase-field energy pressed in terms of the rate of change of internal grain area

The PF paradigm is based on the notion of an order paA'
rametere that identifies phases or grain orientations. In this Al dE A
work, the order parameter takes on a value of either 0 or 1 A=m \ﬁ< — _S> =m ( —o—b \ﬁ> (5)
away from interfaces and suffers a rapid change across inter- SNl dA s SN
face boundary regions. For the sake of clarity, we start with a _ - o ) ) _
nondimensiona| form for the free energy per unit a[qa_, Wherems isa Sl m0b|l|ty coefficient. This equa“on will be

The lowercase symbol indicates an energy density as opised to relate the PF and MC kinetic equations presented

posed to the total energy of the system. This free energy igelow. For the PF paradigm, evolution is based on the con-
given by cept of an Onsager gradient flow—i.e., the boundary velocity

is proportional to the thermodynamic driving force for such
. €y ) motion [21,22. The nondimensional evolution equation is
ep=c (@) +by(e)+ - | Vel® @
=€ 'my(—d,e,)=my[ — € *f' ()~ € 'by(¢)+yAe],
Here f(¢) is a double-well exchange enerdy,(¢) is the (6)
bulk energy, ande is a small parameter that enforces the
required scaling between bulk and interfacial terms and conwhere m, is the PF mobility ands e, is the variational
trols the interfacial width. Interfacial energy is modeled by derivative of the free energy functional given in Eg).

the gradient termy/2)| V¢|? in terms of the parametey. In the MC paradigm, evolution is modeled as a series of
The exchange and bulk energies that we consider are staflips for all lattice points in the domain. The domain is taken
dard in such models: to be a unit square divided into cells of side length A

standard Glauber algorithm has been used, wherein the prob-

1 ability p for each flip is a function of the resulting change in
f(o)=5¢2(1- )2 ®  enery. P g chand
2¢° e ENT™T  [[E, ]]Ta >0,
_ 2 c¥ _ ,
e e ) s (e <0,

This exchange energy has minima @&0 (outen and ¢
=1 (innen corresponding to two pure phases or grain orien
tations. The bulk energy function is such thg8 is the in-
crease in the bulk energy of the inner phage=(1) relative
to the outer phased=0). [[Em]]T“a':bm(Sk—S)JrJEM: (855~ 95.5)- (®

Here [[E,]]™"® is the energy change associated with the
“candidate flip:

C. Monte Carlo energy In the expression abov8, andS; are the new and old states,

The two-state Ising model and multistate Potts model ar@espectively, and is the fundamental temperature. The ran-
two frequently implemented statistical models that use amlom number generator algorithm can be found in R23].
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IV. PARAMETRIC LINKS AMONG THE PARADIGMS Tt ==
link nt /(P(;)—
A. PF-Sl lin hA, 2 /

A standard asymptotic analysi24—27 can be used to
relate the kinetic equations for PF and Sl paradigms. An .
outer expansion is used to match bulk properties, while an
inner expansion across an arbitrary interface relates interfa-
cial properties. The key scaling parameter, which appears in ‘_/ 1n
Eq. 2, ise. As this parameter is reduced, the PF kinetic = X
equation for the inner phase area converges to the following _ _ ]
nondimensional kinetic equation: FIG. 2. One-dimensional profile of the PF order parameter

across an interface as given by E@3). The parameter; deter-
] A mines the effective interface width, EQL4) gives the PF step size
A= _27Tmp’y—47Tme\/;\/:. 9 Ap, andh is the number of lattice points across the interface—
m typically set equal to 10.

This nondimensional equation is linked to the dimensional Sl . . .
equation by introducing an arbitrary timg and lengthd, so and this can be used to determine an appropriate number of

that Eq.(5) has the nondimensional representation spatial grid points. Figure 2 shows this profile and introduces
' a parametem that is used to estimate the effective width of

. —mgr,e mgber, [A the interfacial zone. o
A= > 4 —. (10 If one side of the actual square domain siz& ishen the
d m PF model will be based on a square domain with sides of

lengthL/d. This can be combined with the equation above to
give the PF step sizd, and number of grid points in each
spatial directionN,,:

A comparison of Eqs(9) and(10) provides the desired para-
metric relationships. They are given below in the order of
interfacial free energy, bulk energy, and mobility:

26\/;
_ Ms7po (12) Ap= h
d?

L
q= %S /Tpms, NDZROUI’]C(A—pd
(o

Typical values for the key parameters ase-0.05, 7
1 =0.1,h=10,q=1, andy=1. These parameter values can
P2’ be applied to any problem of interest, with the SI parameters
used to determine what the linking time and length scales
wherebs is the bulk energy jump across the sharp interfacemust be via Eq(12). As a matter of numerical convenience,
o is the interfacial free energy per unit length is the Sl the values ofy, y, ande may be altered slightly in order to
mobility, and the value of the PF mobilityr, is chosen for increase or decrease the number of lattice points in the PF

tanh }(1-27), (14)

convenience. grid.
In implementations of the PF model, however, the values
of v andq must be of order 1 since is assumed to control B. MC-SI link
the size of each term. Given an Sl system, it is therefore
more convenient to chooseandgq, and then use Eq11) to To relate the MC parameters to those of Sl theory, atten-

those of the SI theory: free energy of the two-dimensional Ising mo¢i20]:
J 1
_49%0 _ 290 o=—|2—aln cotl-(—) . (15)
Tp= > = ) (12 A a
m:bg be:y

A id di tizati f the PE d .. In this equation@=T/J, whereJ and T are the interaction
S an aside, a proper discretization of the omain I%nergy and fundamental temperature of the Ising model. The

sug:h that interfacial Zones span approximately teq IattiC?)arameterA is the length of one MC cell. This interfacial
points. To highest order ia, the one-dimensional profile of free energy function is plotted in Fig. 3. Because the Sl in-

the order parameter across an interface centerec-at is terfacial energy is isotropic, the MC temperature must be

given by sufficiently high that anisotropic lattice effects are negligible
[28].
o(X)= 1 1+tan?‘( X ) , (13) The MC kinetics of Eq(7) indicate that the motion of the
2 ey interface depends on temperature and interaction energy only
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FIG. 3. Onsager solution for surface energyas a function of w5

temperatureT, interaction energy], and MC cell widthA. The

horizontal axis is in units ofe=T/J. w2

w4 w3 | bl

throughe, so Eq.(15) implies that the interface speed must
be proportional torA/J. This proportionality constant will
be referred to as the scaled mobility, . Also, each flip FIG. 4. An internal grain is shown, and sites that can flip at zero

!nVOIVeS an area\*, and a timer,, per MC Step,mUSt be temperature are labeled. There are seven dark sites and three white
introduced. The MC averaged rate of change of internal arCdtes that can flip, so the inner grain would shrink by four units if all

must therefore be flips were actually realized. This is a general property of enclosed
areas on a square lattice governed by the properties of only four
. [Am,) [ A2 nearest neighbors.
A—( )()(_O’). (16
J Tm

The mobility functionm, therefore has a low temperature
asymptote ofm,=2.0.
Here the cell width\ is equal to IN,,, whereN?Z is the total Despite the fact that nearly all of the flips at low tempera-
number of MC cells. Two MC simulations with identical ture do not change the system energy, there are four key flips
bulk and surface energy densities will give results equivalenthat do lower the energy and serve as a winch in the demise
to the same Sl simulation provided that the ratfo 7, isthe  of the internal grain. To exhibit this, a zero-temperature
same. In the absence of any need to make such a comparis@mulation was run for which squares with more than two
though,=,,=1 is typically chosen. The SI and MC mobilities unlike neighbors were not allowed to flip. The inner grain
are then related byng=A3m, /I 7,. quickly evolved into a diamondlike shape, which slowly
It is possible to estimate the MC mobility at zero tempera-shrank as the tips were pinched off by random flips of bor-
ture based on a purely geometric argument. Since no enedering squares. One time slice is shown in Fig. 5, where the
getically unfavorable fluctuations are allowed, interfacestips are highlighted with arrows. Also shown in the figure are
tend to be smooth and boundary evolution is dominated byips that have been pinched off and isolated from the inner
flips that do not change the system energy at all—i.e., byrain. Avronet al. provide a more detailed consideration of
squares that have two neighbors of the same spin as theriC grain shape at low temperaturz9].
selves. The time-averaged behavior of such an assembly can
be estimated from the total number of flips of each spin that
can occur. As illustrated in Fig. 4, the difference in possible
flips will always favor the outer grain by four units, so that

rmA/Azz —4 at zero temperature. As discussed below, this
estimate was found to be within 3% of the measured value.
To further test the geometric argument for zero-temperature
kinetics, the MC simulator was temporarily modified to con-
sider the eight nearest neighbors on a square lattice instead of
just four. It is easy to show that the same geometric reason-
ing predicts thatr,,A/A?=—8 when all eight neighbors are
given the same pair potential. The averaged result of 50
simulations resulted inrA/A%=—7.745 for an error of
3.2%.

From Onsager’s expression for the interfacial free energy,
o=2 at zero temperature. Equati¢ébe) then implies that

FIG. 5. MC simulations at zero temperature exhibit a diamond-
2 2 like internal grain if sites with more than two unlike neighbors are
. —2my,Ac  —4A . . . . .
A= = . (17) not allowed to flip. Circled points are tips that have been pinched
Tm Tm off and isolated by random flips of nearby sites.
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FIG. 6. Numerically derived inner grain shrink rate and bilinear ~ FIG. 7. Numerically derived MC mobilities. The scaled mobility
fit. A 200X 200 grid was used with an initial internal area fraction of m,, is dimensionless. The curve is obtained directly from the fit in
0.25. A minimum of 50 runs were averaged for each data point, andfig. 6 and is given in Eq. 18.
most data points were derived from either 100 or 150 runs.

in their paper. The quantitative differences merit a brief com-

A series of numerical simulations were carried out to findment though. Their MC results are based on ax4000 grid
m,, as a function ofe. Although several domain sizes were with starting radius of only 20 lattice points, and no infor-
investigated for the sake of consistency, the data plotted wasation is provided as to the number of simulations that were
obtained using a 200200 grid (A=0.005). A single inter- averaged to obtain each of the eight data points provided.
nal grain with an initially circular shape was considered andThey also point out that their MC data were fitted at one
65 different values otr=T/J were tested. For each test, the point in order to match time scales with their estimate for
initial area fraction was set to either 0.25 or 0.5, and a mini-mobility based on Langevin dynamics.
mum of 50 simulations were averaged. The rate of change of As an aside, simulations that allow for bulk site flipping
the internal area is plotted in Fig. 6 and exhibits a nearlyare no longer composed of pure phases; as the temperature
bilinear dependence oa. Note that the zero-temperature increases the representation of second-phase nuclei will in-
value is very close to the value of 4 estimated above. Thigrease as shown in Fig(d). To take this into account, the

bilinear fit is used with Eqs(15) and (17) to obtain an ex-
pression for the MC mobility functiom,, . This function is

plotted in Fig. 7 and appears in the parametric relationships
given in Eqs(18) preceded by the links previously given for

interfacial and bulk energy:

= ! 2J—TL J 18
o=% n{ cot Tl (18
~2p,
T
3.94
—, a=<0.639
Ma™) 5.03-1.71
——F,  a>0.639,
g
_A%m,
me= T

In the conversion list, B, is the bulk energy difference be-

following map was used:

_ feountfo
factual_l_—zfo-

(19
Here f 5c1ual IS the area fraction to be used for the kinetics
comparisonf.,unt IS the area fraction measured in the simu-
lation, andf, is the equilibrium area fraction of the phase
being considered. The parameté is a function of «
=T/J as shown in Fig. 8, where it is shown along with the
Bragg-Williams approximation for spontaneous magnetiza-
tion density[3,4].

E ]
Y= 002 .

0.01 -

<t
1 12 14
oL

Bragg-Williams
0.03 : Approximation \-l -
I - - N
-
e

06 08 1.

tween the two orientations in the MC model. Note that the |G 8. Plot of equilibrium volume fraction of the second phase
relationship between bulk energy terms is based solely on thgs a function of«=T/J obtained from numerical simuations

value of the dimensional bulk energy per unit area.
The dependence of shrink rate enis similar to that
given by Safran, Sahni, and Grg48]—specifically Fig. 11

(pointg and using the Bragg-Williams approximati¢solid curve
for spontaneous magnetization—equivalent to the volume fraction
being considered here.
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FIG. 9. Comparison of PF and Sl simulations for an internal Time Step
grain shrinking in the presence of both bulk and interfacial driving
forces. FIG. 11. Comparison of PF, MC, and Sl simulations for an

internal grain shrinking in the presence of both bulk and interfacial
C. PF-MC link driving forces. In all simulations, the MC step size was 0.01.
With the SI theory connected to both the PF and MC A. PF-SI comparison

models, a quantitative relationship can be obtained between Ei . . b he PE and SI mod
the nondimensional PF parameters and the dimensional Mc_Fi9ure 9 gives comparisons between the PF and SI mod-

arameters by giving the length and time scaling in terms of'S: IN one case, the inner phase has a higher bulk energy
Fhe MC parar)rqegters:g g g (g>0), so both the surface energy and the phase bulk en-

ergy favor the outer phase. There is no significant difference

Tm (J0\2 between the PF and Sl curves. In the other case shown, the
Tp:m_(b_m) g(a), (200 outer phase has been made to have a higher engrg®)

“ but the surface energy still dominates the total driving force.

The bulk energy difference retards the rate at which the inner

d= i(%) (a) grain shrinks and the interface moves more slowly. The
B Jy\ bm gle), square lattice adopted in the PF simulation causes the inter-
face to tend towards a square in the later stages of evolution.

1 This effect is magnified in processes for which the interface

g(a)=2-aln cotI‘( ;> } moves slowly[29].

B. MC-SI comparison

V. BULK ENERGY EFFECTS Using the calibration obtained without bulk energy, a

_ : omparison of SI and MC predictions is now undertaken
Parametric links have now been established among th\(I/‘é\/ith bulk effects included. Figure 10 shows simulation re-

three paradigms, under the restriction that the thermOdyéults for three typical cases. The first is for low fluctuations
namic driving force is generated solely by interfacial free yp : ’

energy. Implicit in the form of Eqs(5)—(7), though, is the the second for medium fluctuations, and the third for high

assumption that the mobility of each method is independenqmu;tt:jhat\'s(;ls‘wﬁﬁ tlrslecrljl?\az;rl fir:;);T tpeediggg;(;:?ce)ngsierrﬁsveiltts
of the nature of the driving force. This implies that the links wt b

derived should be applicable to processes driven by a co b? supposit.ion that the paradigm link should apply to simu-
bination of bulk and interfacial driving forces. ations that include bulk energy.

0.7 | | | | | — |
0.5 T T  aEREE
g Set#1: T=2,1=2.56, b= 0.950 £ 06 | Set#1 | ,b__‘w-ﬁ —
= 4 Set#2: T=2,1= 167, b=0083 || _ me = | . 5
E Set#dT=2T=LI1T,b=002% 1 . g1y E 0.5 == 1 T=4, J=3'33'bm= 0070~
o — MC12 = o4 |
o o 82 @ |
'; 02 -_— M3 _q: 030 —
# 513
E 0.1 - '-‘Fu 0.2
X -\%‘v\ - = 01
0 ' T=4,J=225b= 0.116
0 00 10 1 50 2000 i a— ]
Time Step ] 1000 2000 3000 4000 5000 6000 7000

Time Step
FIG. 10. Comparison of MC and SI simulations for an internal
grain shrinking in the presence of both bulk and interfacial driving  FIG. 12. Comparison of MC, PF, and SI models for a single
forces. In all simulations, the MC step size was=0.005. Set 1  planar interface moving through a square domain. The left phase is
and 2 results are the averages of five simulations, while set 3 resultgven the same properties as the inner phase of the previous simu-
are from a single simulation. lations. The MC results are each for a single simulation run.
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FIG. 13. Plot of rms error between Monte Carlo and sharp- 'U'J_'
interface simulations as a function afandb,,/J. The parametric z |
relationships developed in this investigation were used to obtain= 0.1
sharp-interface parameters directly from the Monte Carlo param-

eters. 0l | |
0 20 40 60 80 100
C. MC-PF-SI comparison Time Step

dThe rﬁSUItS.OfF{’.‘ colnilp_?_ﬂsol\r;lgfdthe F]:F’ Sl, ar;d Mngmeth FIG. 14. MC error as compared with SI model for a series of
0ds IS shown in Fg. 11. 1he ata for sets 1 an WeTlimulations. The dimension of the MC simulation is increased while
obtained from single simulations, whereas the MC part of Seﬁeeping the SI parameters the same. The Sl parameters are
2 is an average of ten simulations. It was found that, so long. 17¢ o me=1.13-6, b= —1.78—4. The error plotted is the

as the modeling parameters were within a well-defineds error divided by the initial inner grain fraction of 0.25.
range, the three techniques provide essentially the same ki-

netcs. . . tuned, since it is directly proportional to the MC cell size.
'.A‘S a final checl§, simulations were performed for a d(?'Thus Fig. 13 can be used as a guide in choosing a MC cell

Tzall\évlglrriflzgg Qge;ﬁcteheemdgraemr:; iucltTir?I:eb?aI:\?vVggr:nlvllz é:gs'ize that gives an acceptable conversion accuracy. The error
: S ySEE pa . L lotted is the rms error divided by the initial inner grain

and Sl is discussed in the following section and is mtende(fraction of 0.5. The roughness in the plot is due to the fact

to be a guide for. determining the range over which the rela’[hat only three simulation runs were averaged for each data
tionships are valid.

point.
_ The ability to control conversion accuracy is best illus-
D. Conversion Accuracy trated by considering what MC parameters are most appro-

The link between S| and MC interfacial energies is basedriate for a given set of S| properties. Equatid®) implies
on Onsager’s derivation and is statistically exact for a planathat the set of MC parameters can be expressed as a function
interface parallel to lattice planes, but is valid for curvedof the Sl properties and the MC cell size
interfaces only when the MC temperature is sufficiently high

_p-1 2
that the effects of lattice anisotropy are negligible. Secondly, a=F " (msory/A%), (21)
the link between mobilities is numerically fitted. Finally,
bulk energy effects restrict the rangelnf/J as well as the oA
range of validity of the SI and MC links. For values of bulk J= 2~ aIn[coth 1/a)]’

energy that are too large, the evolution mechanism becomes

quite different than that associated with reduction in interfa-

cial free energy. In the extreme, for instance, a sufficiently T=ald,
large bulk energy in the MC model will cause all lattice
points to flip to the same state in one MC step. To quantify
this limitation, a series of simulations were performed rang-
ing from motion dominated by interfacial free energy to mo-
tion dominated by bulk energy. For a sufficiently large bulk Here the functiorF («) is used:
energy parameter in the MC model, the interface does not
maintain a circular shape, and the rate of area change di-
verges from the Sl prediction. A root mean error analysis was
performed over the region O5a<<1.8 with the bulk energy
changes in the region 0.02%,,/J<0.333. All the results The cell sizeA is then chosen so as to achieve the desired
are plotted in Fig. 13. As can be seen in that figure, an errovalues ofa and the ratidy,,,/J. This approach can be used,
of less than 10% is obtained provided €.4<1.5. For a for instance, to obtain MC results within a prescribed accu-
given set of Sl properties, though, the ratiq/J can be racy by reducing the MC bin size as illustrated in Fig. 14.

bn=bA%/2.

F(a)=(m,)[2— alIn{coth(1/a)}].
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